PHEV’s Set To Revolutionise The Hybrid Vehicle Market?

Hybrid and electric vehicles have already proven to be a global success; however the economical benefits and environmental gains of conventional hybrid vehicles have always been limited by the restrictions on battery-only driving distances. The use of lithium-ion batteries within Plug-In Hybrids (PHEVs) however could change all of this. More efficient and capable of producing up to 3 times the energy of a NiMh battery, lithium-ion technology is set to revolutionisethe hybrid vehicle market.

Whereas the battery pack in a conventional hybrid is charged exclusively from the on-board internal combustion engine and regenerative braking, a plug-in hybrid can be plugged into the mains and charged to give extended travel time running on battery power alone. PHEV’s are able to give drivers the best of both worlds, providing the performance and journey distance of conventional hybrid cards, whilst offering the substantial fuel economy, emission reduction, and petroleum displacement benefits of pure battery electric vehicles. With today’s ever increasing oil prices, electric and hybrid vehicles have never been so relevant, and with performance figures of over 100mpg it’s easy to see why PHEV’s are being hailed as the future of the auto industry.

Lithium-Ion Technology

Previous hybrid vehicles used nickel metal hydride (NiMH) batteries, which can be engineered for relatively short battery-only driving distances. The larger energy storage and electrical power capacity that lithium-ion battery technology provides however, means that next generation plug-in hybrids will be capable of travelling much further using battery power alone. PHEV designs currently beingtrialledboast top speeds of 62mph in EV mode and an electric-only range of 12.5 miles, a significant improvement on the previous 2 mile range of conventional hybrids.

The environmental gains and economical benefits of PHEV’s are significant, the increased power, endurance and acceleration in EV mode means that during town driving the vehicle is able to perform using battery only power, leaving the combustion

engine to kick in for higher speed driving or when battery power runs out. When the battery power does run down, PHEV’s operate like conventional hybrids and use the engine power and regenerative braking to charge the battery and drive the vehicle, eliminating the practicality issues with pure electric vehicles and their restricted travel distances.

The Future of Hybrid Vehicles

This extended battery-only power means reduced fuel consumption and lower emissions, especially when powered using electricity from renewable energy sources. Offering the best compromise between efficiency and usability, PHEV’s are predicted to be popular with consumers looking for increased economical benefits and environmental gains while retaining the function and performance of a conventional hybrid. Toyota are alreadytriallinga new plug-in hybrid version of their popular Prius, and with other manufacturers following closely in their lead and indicating the release of PHEV vehicles in the next 2 years, plug-in hybrids could soon be commonplace on our roads.

Are Electric Vehicles Ready for Prime Time?

Okay, so you are ready to do your part to reduce fossil fuel usage and you are considering an EV (Electric Vehicle). Several manufactures are marketing EV’s, but which one is right for you? Everyone has different driving styles and needs. How far can you go on a 100% EV? How reliable are they? Are there any savings? Some of these questions will be answered below to help you determine if this technology is ready for you.

There are three types of EV’s available. But, are they ready for prime time? You decide.

  1. Dedicated EV- Electric only
  2. Extended EV Electric with gasoline engine
  3. Plug-in hybrids

Dedicated EV is an electric only vehicle. There are four models available or expected out by 2012.

  1. Nissan Leaf is a four-door five-passenger hatch back pure battery electric vehicle. It has an expected range of 100 miles between charges, which Nissan says is sufficient for 90% of Americans. It takes eight hours or more to fully charge with a 220-volt outlet and longer with a 110-volt outlet. The starting price is estimated at $33,600. The warranty on the battery and related hardware is eight years or 100,000 miles. The estimated cost to replace the battery is $18,000. Expected availability is December 2010.
  2. Mini E Cooper is a two-door two-passenger pure battery electric vehicle. It has an expected range of 156 miles under ideal conditions. Most drivers get about 100 miles between charges. It takes approximately 3 hours to charge with a 240 volt 48 Amp outlet or 4.5 hours with a 32-amp outlet. If using a 110 volt 12 amp outlet it takes approximately 26.5 hours to charge. This is a two-passenger vehicle because the battery takes up the entire back seat. The regenerative braking takes a little getting used to, the system kicks in as soon as the driver lifts his foot off the accelerator pedal. This causes the vehicle to begin slowing before the brake pedal is applied. BMW is leasing these vehicles as part of a special program. They are developing a replacement based on the BMW 1 Series, which is due out in 2011.
  3. Ford Focus EV is a four-door sedan based on the redesigned 2012 Focus. The prototypes have a 23-kilowatt hour lithium-ion battery pack with an estimated range of 100 miles. Charge time is approximately 6 hours on a 220-volt charger.
  4. Tesla Roadster first started selling in 2008. It has a price tag of $111,000, it is a two-seater sports car. It is based on the Lotus Elise with a fiberglass body. This car is a rocket, it can accelerate from zero to 60 in under four seconds. It has a range of 245 miles with a massive 53-kilowatt-hour battery pack. Full charge takes 3.5 hours on a proprietary 240-Volt 70 amp charger. It has a very stiff and jarring ride with a very basic interior. It is awkward climbing into the cockpit because of the tall wide sill. The loud battery-cooling fans emit a constant roar behind you. Tesla is developing a lower cost $50,000+ model S sedan expected to be released in 2012.

Extended EV electric with gasoline engine

The Chevrolet Volt is the only model that falls within this category. It is a four-door four-passenger sedan. The Volt does not have a rear bench seat like most vehicles because of the T shaped battery pack. It has a range of 40 miles on electric power. GM states this is sufficient for 75% of commuters. Once the battery level drops below a certain level, a small gas engine kicks in to provide enough electric power to run the electric motor. The overall range is 300 miles before filling the gas tank or charging the batteries. GM says the Volt can run with never being plugged in. However, it will impact the fuel economy. Charge time for the Volt is four hours on 220 volt or eight to 10 hours on 110-volt outlets. The Volt charges faster than the dedicated electric vehicles because it has a smaller battery. The battery warranty for the Volt is the same as the Nissan leaf. The warranty on the battery and related hardware is eight years or 100,000 miles. The starting price for the Volt is $41,000. The replacement cost of the Lithium-ion battery is approximately $8000, which is $10,000 less than the Leaf. The electric motor produces 149 horse power and 273 pound-feet of torque. Those torque numbers are about the same as a V-6 engine.

Plug-in Hybrids

There are no manufactures producing plug-in Hybrids as of this writing. However, there are some aftermarket companies producing aftermarket add on batteries for the Toyota Prius. The extra cost of these add on batteries is approximately $11,000. This added battery boosts the gas mileage by approximately 50% for the first 35 miles. Once the battery is depleted, the Prius reverts back to its regular hybrid operation at which time the fuel economy drops slightly below that of a standard Prius because of the added battery weight. Toyota is field-testing the plug-in Prius for commercial use. There are no expected models for retail customers until 2012.

Some things to consider before purchasing an EV

What are your driving habits? What are the longest distances you will be traveling? When driving a pure electric vehicle; if the battery runs out completely with no charging stations available you will be stranded. With the long charge times, it will take some time to make the vehicle usable again. This is where the extended range Volt becomes more practical. Filling up the gas tank is faster than waiting for the battery to charge.

Using other electrical features like the Air Conditioning, Heating, Lights, Wind Shield Wipers and playing Music; engineers say this can consume approximately 50% of the battery power which will reduce the vehicles range.

Lithium-ion technology battery life is undetermined, however, the eight year 100,000 mile warranty on the Chevrolet Volt and the Nissan Leaf do give some piece of mind.

Cost savings

An EV costs about.04 cents per-mile (depending on the electric rates in your area). You can compare that to a Toyota Corolla at 30 mpg paying $2.80 per gallon, the per-mile cost is.09 cents.

Government incentives

The first 200,000 EV buyers from each automaker are eligible for $7,500 federal tax credit. There are also some regional incentives; for instance, California will offer an additional $5000 tax credit for “zero emission” vehicles. Check your area for local incentives.

To conclude, there are four 100% electric vehicles available by 2012. One extended range vehicle, which could be zero emission if your driving range is within the available battery level. And there are the more common Hybrids, like the Prius which runs mostly on regular gas but with great mileage and with the future pilot of the Prius as a plug in, this vehicle will eventually fall within the extended range category.

Is the EV ready for prime time? Your driving habits and needs will tell. How far do you drive daily, can you plugin at work? Are most of your driving needs around town? This is where the greatest benefits will be realized. What part of the country do you live in? Will an EV work in your environment? Parts of the country with extreme heat or cold will require more battery usage to heat or cool the vehicle, which will reduce the range. Will this reduce your cost savings?

With government incentives, the cost of one of these EV’s can be reduced to a more acceptable range, keeping the cost closer to a conventional gas vehicle. There are also reduce maintenance costs with an EV, no oil changes and the electric motors are mostly maintenance free.

EV Basics II – An Electric Vehicle Primer

Important Acronyms:

BEV – Battery electric vehicle, a vehicle which uses only batteries and one or more motors to provide the force that makes it go.

EV – Electric vehicle, any vehicle that uses electric power to provide some or all of its propulsive force.

FCEV – Fuel cell electric vehicle, an electric vehicle which uses a hydrogen fuel cell as its source of electric power.

HEV – Hybrid electric vehicle, a car or truck that uses both an ICE and an electric motor.

ICE – Internal combustion engine, the powerplant of choice for the dirty, inefficient vehicles of the 20th Century.

PHEV – Plug-in hybrid vehicle, a hybrid vehicle with a battery pack that can be charged from a wall socket.

Have you just developed an interest in electric vehicles? Are you looking to learn some EV fundamentals? You’ve come to the right place! Read on, and you will start your education on the wonders of EVs. In this article, I will introduce readers to some of the various different types of EVs and explaing some of the advantages and issues associated with each type. Note that this article is only an introduction. I will go into more depth on different aspects of the subject matter in future installments of the “EV Basics” series.

There are several different power trains available which use electric motors. The simplest of these vehicles is the battery electric vehicle or BEV. This is a pure electric vehicle which uses only a battery pack and an electric motor to store energy and create the power necessary to make the car or truck move. BEVs have been around for a long time. In 1835, Thomas Davenport built a railway operated by a small electric motor. In the early years of the 20th Century, BEVs competed quite successfully with ICE-powered vehicles. It was not until Henry Ford started building the Model T that gasoline-powered cars that BEVs faded from public view.

In the 1960s, BEVs began to make a comeback. Interest in electric vehicles has grown steadily since then as concerns about pollution and dependence on foreign oil have permeated mainstream consciousness. Currently, BEVs are being designed and built in a wide variety of styles and layouts, from electric scooters, to low-speed electric cars such as those produced by Zenn Motor Company, to high-power freeway burners such as the two-seat Tesla Roadster or the family-friendly, five-passenger eBox by AC Propulsion.

BEVs must face a few hurdles if they are to replace ICE-only cars as our primary method of transportation. Historically, they have had limited driving range, significantly less than the range of a gasoline-powered car. Additionally, BEV have generally taken several hours to recharge the battery pack. In a world in which people have gotten used to instant gratification, this poses a real problem. The good news is that many people are working on these issues, and dramatic improvements are being made in both range and recharging time. Current EV designs have achieved ranges of more than 300 miles and charging times have been brought down to two hours or less in some models charged with high-powered “smart” chargers.

In the 1990s, Honda and Toyota introduced the American driving public to the hybrid electric vehicle or HEV. These vehicles use both an ICE and an electric motor. There are different types of HEVs which layout the engine and the motor in either a parallel or a series configuration. In a series configuration, the ICE acts only as an electrical generator. In a parallel configuration the ICE again acts as a generator, but it also drives the vehicle’s wheels just as the engine would do in an ICE-only vehicle.

HEVs provide significant benefits over ICE-only cars in two distinct areas. Firstly, the electric motor allows engineers to operate the ICE more efficiently because an HEV can rely heavily on the electric motor at points in which the ICE would be operating very inefficiently. Secondly, the battery pack in an HEV can be used to recapture the energy used while braking. To accomplish this, engineers create regenerative braking systems which used the electrical resistance of a generator to slow the car down long before they mechanical brakes come into play. The energy from the generator is then stored in the battery pack for future use. In a car without regenerative braking, all this energy is wasted by creating heat and wearing down the brake pads.

HEVs also have some problems. Unlike BEVs, they require some gasoline or other liquid fuel to operate. Also, they are more complicated then either a BEV or an ICE-only vehicle because they require both types of drivetrain components under one hood. However, they eliminate the range and recharging issues associated with BEVs, so HEVs can be viewed as a good transition step to the vehicles of the future.

Recently, much attention has been paid to plug-in hybrids or PHEVs. In essence, a PHEV is an HEV with a larger battery pack, a plug which allows the battery pack to be charged from a wall socket, and a control system which allows the vehicle to be operated in electric-only mode. The wall-charging feature allows a PHEV to get some of its power from the utility grid (or from a local power source such as a photovoltaic array or wind turbine) and some of its power from gasoline. Recently, several companies and individuals have been working on creating plug-in versions of the Toyota Prius. These conversions allow the Prius to run in all-electric mode until it reaches roughly 35mph. They give varying traveling ranges in all-electric mode, depending on which type of batteries are used and how many extra batteries are installed.

While these plug-in Priuses are a good start, PHEVs as a genre have even more potential. General Motors recently introduced the Chevrolet Volt E-Flex concept car, a PHEV which can travel up to 40 miles in electric only mode. It has a large electric motor and a one liter, three cylinder ICE. PHEVs of the future could follow this trend even further, maximizing the electric elements of the drivetrain while reducing the ICE to a tiny power plant which gets used only as a last resort.

In the last few years, fuel cell electric vehicles or FCEVs have grabbed many headlines. These are electric vehicles which use a hydrogen fuel cell to provide power, eliminating the need for a battery pack. Proponents point out that hydrogen is the most abundant of the chemical elements and that the only gas emitted from an FCEV is steam made from pure water. Detractors point out that nearly all hydrogen currently available is made from natural gas, a petroleum product. Hydrogen is also difficult to store in quantities sufficient to give FCEVs adequate range and it can present safety hazards when pressurized in tanks. Finally, FCEVs currently require complex, bulky support systems which take up excessive space and result in power delivery systems which are far less efficient than those present in BEVs.

Fuel cells have some potential to become part of the overall energy scenario in the future. However, many feel that FCEVs have been used primarily as a distraction and a stalling device. Companies and politicians keep telling us, “We’ll have FCEVs in the near future, but until then keep driving your Hummers!” These tactics keep people from demanding BEVs as soon as possible. As one saying puts it, “Practical, viable fuel cells are ten to twenty years away, and they always will be.”

One other type of electric vehicle is the human-assist hybrid. The most common example of this vehicle type is the electric bicycle. These are commonly-available, inexpensive, and they give people the health benefits associated with exercise while providing an additional boost when needed. Legally, they must be limited to 20 mph in electric assist mode, and the electric-only range of electric bikes now available is almost always less than twenty miles.

However, readers should ponder the fact that a small, aerodynamic vehicle can cruise at 65 mph on a flat road while using only five horsepower. Imagine the roads covered with small, efficient vehicles that use tiny electric motors and human power to achieve freeway speeds without putting a significant burden on the utility grid. While no major corporations are working on vehicles like this, small groups of dedicated individuals are working to make this type of vehicle available to the general public. These low-power vehicles could become the ultimate transportation solution for an energy-conscious society.

So there you have it! You now have enough information to join EV-related conversations at your next social gathering. You can talk about the different types of EVs, letting people know what is available now and what is coming in the near future. If you are still curious for more details on the benefits of electric vehicles and the advances which are being made in the field, please see the other articles in this “EV Basics” series.